Assignment 3 (10 marks)

- 1) The First Brillouin Zone of a Simple Cubic lattice is the Wigner Seitz cell of a lattice that is:
 - a. Hexagonal
 - b. Simple Cubic
 - c. Face Centered Cubic
 - d. Body centered Cubic
- 2) The First Brillouin Zone of a Face Centered Cubic lattice is the Wigner Seitz cell of a lattice that is:
 - a. Hexagonal
 - b. Simple cubic
 - c. Face Centered Cubic
 - d. Body centered Cubic
- 3) The First Brillouin Zone of a Body Centered Cubic lattice is the Wigner Seitz cell of a lattice that is:
 - a. Hexagonal
 - b. Simple cubic
 - c. Face Centered Cubic
 - d. Body Centered Cubic
- 4) A Bragg Plane is defined as a plane that
 - a. Perpendicularly bisects a valid reciprocal lattice vector
 - b. Touches the origin
 - c. Touches the end of the Reciprocal lattice vector
 - d. Goes through the Reciprocal lattice vector at one third of its length
- 5) For any given wave vector, the condition for diffraction is satisfied when
 - a. Both ends of the wave vector touch the same Bragg plane
 - b. The wave vector lies on the Bragg plane
 - c. The wave vector is perpendicular to the Bragg plane
 - d. One end of the wave vector touches the Bragg plane
- 6) E Vs k relationship of nearly free electrons distort in the vicinity of the Bragg planes due to:
 - a. Reflection
 - b. Diffraction
 - c. Refraction
 - d. Total internal reflection
- 7) With respect to k space, the flat band diagram
 - a. Indicates the locations of the bands
 - b. Does not indicate the locations of the bands
 - c. Indicates the locations of the bands in the extended zone scheme
 - d. Indicates the locations of the bands in the repeated zone scheme
- 8) For a given shape and size of a Brillouin zone, the band structure is decided by

- a. N_f
- b. *E*_{*f*}
- c. Both a and b
- d. Neither a nor b
- 9) Bands are represented using E Vs k diagrams in the
 - a. Extended zone scheme
 - b. Repeated zone scheme
 - c. Reduced zone scheme
 - d. All of the above
- 10) Whether the material is metallic, semiconducting, or insulating, is decided by
 - a. The location of the Fermi energy, E_f , and/or the nearest bandgap above the Fermi energy
 - b. The location of the Fermi energy, E_f , and the smallest bandgap within the material
 - c. The location of the Fermi energy, E_f , and the average bandgap in the material
 - d. Current flowing in the material at V = 0V